National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
The role of adrenergic system in genetic hypertension
Loučková, Anna ; Kadlecová, Michaela (advisor) ; Husková, Zuzana (referee)
The adrenergic system plays an important role in the regulation of blood pressure. In the spontaneously hypertensive rat, the most studied model of essential hypertension, many components of the adrenergic system are altered. Changes in expression level of any catecholamine biosynthetic enzymes or any adrenergic receptor subtypes could be one of the causes of hypertension development. In this work, the expression of adrenergic system genes was measured in adrenal gland, renal cortex and renal medulla of the spontaneously hypertensive (SHR), Wistar-Kyoto and Brown Norway rats at the age of thirteen weeks. In adrenal gland of SHR, all four catecholamine biosynthetic enzymes (tyrosine hydroxylase, DOPA decarboxylase, dopamine β-hydroxylase and phenylethanolamine-N- methyltransferase) and almost all subtypes of adrenergic receptors (with the exception of Adra1a and Adra1d) were underexpressed. This generally decreased expression in adrenal gland of SHR suggests that at least a part of regulation of adrenergic system gene expression is common. The mechanism of this downregulation in SHR could be a negative feedback through adrenergic receptors stimulated by high plasma noradrenaline concentration. In the kidney of SHR, there were no differences in the expression of most of adrenergic receptor subtypes with the...
Classification, structure and function of α-adrenergic receptors.
Makarova, Anna-Marie ; Hejnová, Lucie (advisor) ; Rudajev, Vladimír (referee)
Adrenergic receptors are ones of the most investigated receptors today. Signal transduction by adrenergic receptors is involved in stress response. Stress activates the sympathicus and the hypothalamic-pituitary-adrenal axis of autonomic nervous system. Understanding effects of this activation on adrenergic signalisation is important for affection of the "fight of flight" reaction. Affecting the activity of sympathetic nerve sis important subject of interest in pharmacology and many drugs are developed using this actions. This thesis deals with a group α-adrenergic receptors and its subtypes. One part is devoted to structure which is subject of many explorations recently especially. Next chapter focuses on signal transduction mediated by α-adrenergic receptors. The last section refers to multitude of physiologic functions induced by these receptors. Powered by TCPDF (www.tcpdf.org)
Characterisation and regulation of muscarinic and adrenergic receptors Subtitle: The effect of stress on muscarinic and adrenergic receptors in the lung and in the heart
Nováková, Martina ; Mysliveček, Jaromír (advisor) ; Hynie, Sixtus (referee) ; Mravec, Boris (referee)
The aim of this thesis was to clarify the influence of the stress on the adrenergic and muscarinic receptors in the heart and in the lungs. Research was perform on rat hearts and lungs and on the hearts and lungs of the CRH KO mice. First, we assessed mRNA levels of all α- and β-adrenergic receptor and muscarinic receptor subtypes. Subsequently, we performed the radioligand-binding studies to determine densities of these receptors. We identified all three α1-adrenergic receptor subtypes in the rat lungs. In the lungs of WT mice, we found that the amount of α1-adrenergic and muscarinic receptors was sex-dependent. Densities of the former were higher in females and those of the latter were higher in males. There was no difference between males and females in β-adrenergic receptor density. As for CRH KO mice, the basal densities of studied receptors were lower than in CRH WT mice (except β1-adrenergic receptors in females). The main purpose of the thesis was to detect the immobilization-induced changes in the studied receptors in the kontrol (WT) and CRH KO mice. Short-term and long-term immobilization caused decrease in all α1-adrenergic receptor subtypes in females, whereas only α1A-adrenergic receptors decreased in males. The amount of β1-adrenergic receptors decreased in males and remained without...
Effect of endogenous factors on mesenchymal stem cells
Černá, Kristýna ; Krulová, Magdaléna (advisor) ; Kubinová, Šárka (referee)
Maintaining of homeostasis is essential for the survival of the organism. Stress disturbs the homeostasis and prepares the organism for mental or physical stress. During the stress situation, the endogenous stress factors are released. Through these factors stress affects tissue regeneration, the immune system and other metabolic processes. Chronic stress impacts many parts of body and mind and has a negative effect on these processes. Acute stress has the opposite effect. Mesenchymal stem cells (MSCs) participate in regenerative processes and modulate the immune system. Therefore, it can be assumed that stress will affect on MSCs. The aim of this study was to investigate the effect of stress factors, norepinephrine and corticosterone on the properties and function of MSCs in acute and chronic stress model. In our study, stress factors did not affect the morphology, vitality and differentiation of MSCs. However, the metabolic activity of MSCs was reduced regardless of the duration of their action. The action of stress factors also affected the production of some immunologically relevant molecules and proteins. Unfortunately, the results did not show a clear effect of stress factors on the lymphocyte modulation by MSCs. Key words: mesenchymal stem cells, catecholamines, adrenergic receptors,...
Classification, structure and function of α-adrenergic receptors.
Makarova, Anna-Marie ; Hejnová, Lucie (advisor) ; Rudajev, Vladimír (referee)
Adrenergic receptors are ones of the most investigated receptors today. Signal transduction by adrenergic receptors is involved in stress response. Stress activates the sympathicus and the hypothalamic-pituitary-adrenal axis of autonomic nervous system. Understanding effects of this activation on adrenergic signalisation is important for affection of the "fight of flight" reaction. Affecting the activity of sympathetic nerve sis important subject of interest in pharmacology and many drugs are developed using this actions. This thesis deals with a group α-adrenergic receptors and its subtypes. One part is devoted to structure which is subject of many explorations recently especially. Next chapter focuses on signal transduction mediated by α-adrenergic receptors. The last section refers to multitude of physiologic functions induced by these receptors. Powered by TCPDF (www.tcpdf.org)
The role of adrenergic system in genetic hypertension
Loučková, Anna ; Kadlecová, Michaela (advisor) ; Husková, Zuzana (referee)
The adrenergic system plays an important role in the regulation of blood pressure. In the spontaneously hypertensive rat, the most studied model of essential hypertension, many components of the adrenergic system are altered. Changes in expression level of any catecholamine biosynthetic enzymes or any adrenergic receptor subtypes could be one of the causes of hypertension development. In this work, the expression of adrenergic system genes was measured in adrenal gland, renal cortex and renal medulla of the spontaneously hypertensive (SHR), Wistar-Kyoto and Brown Norway rats at the age of thirteen weeks. In adrenal gland of SHR, all four catecholamine biosynthetic enzymes (tyrosine hydroxylase, DOPA decarboxylase, dopamine β-hydroxylase and phenylethanolamine-N- methyltransferase) and almost all subtypes of adrenergic receptors (with the exception of Adra1a and Adra1d) were underexpressed. This generally decreased expression in adrenal gland of SHR suggests that at least a part of regulation of adrenergic system gene expression is common. The mechanism of this downregulation in SHR could be a negative feedback through adrenergic receptors stimulated by high plasma noradrenaline concentration. In the kidney of SHR, there were no differences in the expression of most of adrenergic receptor subtypes with the...
Characterisation and regulation of muscarinic and adrenergic receptors Subtitle: The effect of stress on muscarinic and adrenergic receptors in the lung and in the heart
Nováková, Martina ; Mysliveček, Jaromír (advisor) ; Hynie, Sixtus (referee) ; Mravec, Boris (referee)
The aim of this thesis was to clarify the influence of the stress on the adrenergic and muscarinic receptors in the heart and in the lungs. Research was perform on rat hearts and lungs and on the hearts and lungs of the CRH KO mice. First, we assessed mRNA levels of all α- and β-adrenergic receptor and muscarinic receptor subtypes. Subsequently, we performed the radioligand-binding studies to determine densities of these receptors. We identified all three α1-adrenergic receptor subtypes in the rat lungs. In the lungs of WT mice, we found that the amount of α1-adrenergic and muscarinic receptors was sex-dependent. Densities of the former were higher in females and those of the latter were higher in males. There was no difference between males and females in β-adrenergic receptor density. As for CRH KO mice, the basal densities of studied receptors were lower than in CRH WT mice (except β1-adrenergic receptors in females). The main purpose of the thesis was to detect the immobilization-induced changes in the studied receptors in the kontrol (WT) and CRH KO mice. Short-term and long-term immobilization caused decrease in all α1-adrenergic receptor subtypes in females, whereas only α1A-adrenergic receptors decreased in males. The amount of β1-adrenergic receptors decreased in males and remained without...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.